Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A

نویسندگان

  • Nari Kim
  • Min-Jung Kim
  • Pil Soo Sung
  • Yong Chul Bae
  • Eui-Cheol Shin
  • Joo-Yeon Yoo
چکیده

Hepatitis C virus (HCV) utilizes autophagy to promote its propagation. Here we show the autophagy-mediated suppression of HCV replication via the endoplasmic reticulum (ER) protein SCOTIN. SCOTIN overexpression inhibits HCV replication and infectious virion production in cells infected with cell culture-derived HCV. HCV nonstructural 5A (NS5A) protein, which is a critical factor for HCV RNA replication, interacts with the IFN-β-inducible protein SCOTIN, which transports NS5A to autophagosomes for degradation. Furthermore, the suppressive effect of SCOTIN on HCV replication is impaired in both ATG7-silenced cells and cells treated with autophagy or lysosomal inhibitors. SCOTIN does not affect the overall flow of autophagy; however, it is a substrate for autophagic degradation. The physical association between the transmembrane/proline-rich domain (TMPRD) of SCOTIN and Domain-II of NS5A is essential for autophagosomal trafficking and NS5A degradation. Altogether, our findings suggest that IFN-β-induced SCOTIN recruits the HCV NS5A protein to autophagosomes for degradation, thereby restricting HCV replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain 2 of nonstructural protein 5A (NS5A) of hepatitis C virus is natively unfolded.

Nonstructural protein 5A protein (NS5A) of hepatitis C virus (HCV) plays an important role in the regulation of viral replication, interferon resistance, and apoptosis. HCV NS5A comprises three domains. Recently the structure of domain 1 has been determined, revealing a structural scaffold with a novel zinc-binding motif and a disulfide bond. At present, the structures of domains 2 and 3 remain...

متن کامل

Interferon-Inducible Cholesterol-25-Hydroxylase Inhibits Hepatitis C Virus Replication via Distinct Mechanisms

Cholesterol 25-hydroxylase (CH25H) as an interferon-stimulated gene (ISG) has recently been shown to exert broad antiviral activity through the production of 25-hydroxycholesterol (25HC), which is believed to inhibit the virus-cell membrane fusion during viral entry. However, little is known about the function of CH25H on HCV infection and replication and whether antiviral function of CH25H is ...

متن کامل

TRIM14 inhibits hepatitis C virus infection by SPRY domain-dependent targeted degradation of the viral NS5A protein

Tripartite motif 14 (TRIM14) was reported to function as a mitochondrial signaling adaptor in mediating innate immune responses. However, the involvement of TRIM14 in host defense against viral infection and molecular mechanisms remain unclear. Here, we demonstrated that enforced expression of TRIM14 could potently inhibit the infection and replication of HCV in hepatocytes, whereas TRIM14 knoc...

متن کامل

Inhibition of Hepatitis C Virus Infection by DNA Aptamer against NS2 Protein

NS2 protein is essential for hepatitis C virus (HCV) replication. NS2 protein was expressed and purified. Aptamers against NS2 protein were raised and antiviral effects of the aptamers were examined. The molecular mechanism through which the aptamers exert their anti-HCV activity was investigated. The data showed that aptamer NS2-3 inhibited HCV RNA replication in replicon cell line and infecti...

متن کامل

Protein Inhibitor of Activated STAT2 Restricts HCV Replication by Modulating Viral Proteins Degradation

Hepatitis C virus (HCV) replication in cells is controlled by many host factors. In this report, we found that protein inhibitor of activated STAT2 (PIAS2), which is a small ubiquitin-like modifier (SUMO) E3 ligase, restricted HCV replication. During infection, HCV core, NS3 and NS5A protein expression, as well as the viral assembly and budding efficiency were enhanced when endogenous PIAS2 was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016